VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1

نویسندگان

  • Hong Yu Ren
  • Diane E. Grove
  • Oxana De La Rosa
  • Scott A. Houck
  • Pattarawut Sopha
  • Fredrick Van Goor
  • Beth J. Hoffman
  • Douglas M. Cyr
چکیده

Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism-based corrector combination restores ΔF508-CFTR folding and function.

The most common cystic fibrosis mutation, ΔF508 in nucleotide binding domain 1 (NBD1), impairs cystic fibrosis transmembrane conductance regulator (CFTR)-coupled domain folding, plasma membrane expression, function and stability. VX-809, a promising investigational corrector of ΔF508-CFTR misprocessing, has limited clinical benefit and an incompletely understood mechanism, hampering drug develo...

متن کامل

Insights into the mechanisms underlying CFTR channel activity, the molecular basis for cystic fibrosis and strategies for therapy.

Mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) cause CF (cystic fibrosis), a fatal genetic disease commonly leading to airway obstruction with recurrent airway inflammation and infection. Pulmonary obstruction in CF has been linked to the loss of CFTR function as a regulated Cl- channel on the lumen-facing membrane of the epithelium lining the airways. We have learn...

متن کامل

Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2.

Cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic membrane protein that functions as a Cl(-) channel and consists of two membrane spanning domains (MSDs), two cytosolic nucleotide binding domains (NBDs), and a cytosolic regulatory domain. Cytosolic 70-kDa heat shock protein (Hsp70), and endoplasmic reticulum-localized calnexin are chaperones that facilitate CFTR biogenes...

متن کامل

Synergy-based small-molecule screen using a human lung epithelial cell line yields ΔF508-CFTR correctors that augment VX-809 maximal efficacy.

The most prevalent cystic fibrosis transmembrane conductance regulator (CFTR) mutation causing cystic fibrosis, ΔF508, impairs folding of nucleotide binding domain (NBD) 1 and stability of the interface between NBD1 and the membrane-spanning domains. The interfacial stability defect can be partially corrected by the investigational drug VX-809 (3-[6-[[[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclo...

متن کامل

Restoration of R117H CFTR folding and function in human airway cells through combination treatment with VX-809 and VX-770.

Cystic fibrosis (CF) is a lethal recessive genetic disease caused primarily by the F508del mutation in the CF transmembrane conductance regulator (CFTR). The potentiator VX-770 was the first CFTR modulator approved by the FDA for treatment of CF patients with the gating mutation G551D. Orkambi is a drug containing VX-770 and corrector VX809 and is approved for treatment of CF patients homozygou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2013